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We study the homogeneous, isotropic, nonlinear Boltzmann equation for a 

Maxwellian interaction. We show that solutions decreasing like inverse powers 
of the energy are physically acceptable both in the linearized and the quadratic 
problem. Because all moments may not exist, we introduce a generalized 
generating function and a finite differential system for generalized Sonine 
moments is derived. These new solutions may lead to small relaxation rates and 
justify in most cases the linear approximation. 
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relaxation rates; Tjon's effect. 

1. INTRODUCTION 

Within the last years, much work has been done on the homogeneous, 
isotropic solutions of the nonlinear Boltzmann equation (B.E.) when the 
interaction between particules are Maxwellian, i.e., V ( r ) ~ r  -4. The main 
reason is that the eigenfunctions of the linearized problem are easy to 
handle and yield for the full nonlinear problem a convenient basis where 
the problem reduces to a recursive finite differential system in the time 
variable. 

The process, first developed by Wu et al., (I 4) after Grad's method, (5) 
is the following: one first derives from the B.E. a finite nonlinear differen- 
tial system for the moments of the distributions function; this system 
equally holds for the Sonine moments which are linearly related to them. It 
remains to prove, that if the expansion has a meaning at initial time, it is 
still true at further times and that it converges to the equilibrium function 
e -v2 for long times. (6 8) 

1 Commis sa r i a t  a l'Energie Atomique, Division de la Physique, Service de Physique Theorique, 
C E N - S A C L A Y ,  Boite Postale No. 2, 91190 Gif-sur-Yvette, France. 

181 

0022-4715/81/0900-0181503.00/0 �9 1981 Plenum Publishing Corporation 



182 Cornille and Gervois 

The eigenfunctions L(, d/2- l}(x)e -x  [d is the dimensionality, x = "D 2 is 
the energy variable, and LC,~}(x) is the Laguerre polynomial] have two 
important characteristics: (i) they decrease exponentially for large energies, 
and (ii) they are a basis of the Hilbert space %1 of the functions with norm 
ff2(v,t)e+V2dv < oe, and the Hilbert operator associated to the B.E. is 
square integrable in this space. Thus all these eigenfunctions span a rather 
large space, and reasonably one may hope that most initial distribution 
functions belong to it. 

One may wonder whether we find this to be so for all solutions of the 
Boltzmann equation. The answer is no in the linearized case, where 
Bobylev (9) found other solutions which were not decreasing exponentially, 
but like inverse powers of the energy variable; they no more belong to the 
Hilbert space %I as their norm is infinite. One problem is to see whether 
they are relevant for the full nonlinear equation (l~ and, in the affirmative 
case, how all previous results are modified. 

In the present paper and in a preceding letter {~) we try to answer 
these questions for a Maxwellian gas with isotropic cross section for the 3d 
case and the corresponding 2d T jon-Wu model(3); generalization to all 
dimensions d is equally indicated. Bobylev's new eigenfunctions lead again 
to solutions of the quadratic problem but they generate a larger Hilbert 
space %H with another norm. They cannot be rejected as they satisfy the 
physical requirements of mass and energy conservation and of finite 
entropy, but as the Hilbert operator is no more square integrable, they are 
not independent. (11) Notice that, in the linearized case for a hard-sphere 
gas, (12) the solutions are not acceptable and presumably Maxwell interac- 
tion corresponds to a limit situation. 

As to the derivation of the differential system, Grad's method is no 
more valid because moments may not exist. We define a generalized 
generating function which reduces to the ordinary generating functional of 
the power moments when the distribution function belongs to %1. This 
generalized generating function still has a meaning when either some of the 
moments or the ordinary generating function do not exist. It satisfies a 
nonlinear partial differential equation (N.L.P.D.E.)--and not an integro- 
differential equation--which has remarkable symmetry and invariance 
properties and is dimensionally independent; in the Laguerre case, the 
N.L.P.D.E. was first established by Krook and Wu. (~'2) The eigenfunctions 
follow easily and we derive a recursive differential system for generalized 
Sonine moments: a possible generalization of the ordinary moments is 
given. Notice that we do not retain all found solutions of the N.L.P.D.E. as 
the other possibilities must be rejected because of the physical restrictions. 

In Section 3.1, proof for the convergence of generalized expansions is 
provided, and we obtain sufficient conditions at t = 0 such that the norm of 
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the solution in the generalized Hilbert space exists when t =~ 0 and t ~ m, 
where it reduces to the Maxwellian form. We show how to generate infinite 
sets of positive initial distributions; they remain positive at further times. 

In Section 3.2, we show that there are infinitely many similarity 
solutions, the Bobylev (13)'2 Krook-Wu solution (~'2) being not the general 
situation; nevertheless, it seems difficult to prove that some of them are 
positive, and the one-parameter Krook -Wu family is up to now the only 
one which possesses good properties for a distribution function. 

In Section 4, we give numerical results. Because of the asymptotic 
behavior of the eigenfunctions at large energy, numerical effects which 
were important in the Laguerre case are modified: for example, Tjon's 
overpopulation (~4) is true only for intermediate times or intermediate 
energies. On the other hand, new effects take place. The most interesting is 
the possibility of very slow relaxation to equilibrium as relaxation rates are 
not bounded from below; actually slow relaxation follows from the slow 
powerlike decrease of the eigenfunctions at large energies and conversely. 
Another feature is the validity of the linearized form for long times in 
rather general situations. Several examples are given. 

2. N.L.P.D.E.  FOR THE G E N E R A L I Z E D  G E N E R A T I N G  F U N C T I O N  

As explained in the Introduction, we shall not keep the energy variable 
v 2 = x, as the Boltzmann equation depends on dimensionality and (except 
for d = 2) in a complicated way of v through the collision velocities v' and 
w'. We look for a transformed function G(p,t) of a unique conjugate 
variable p, which should be dimensionally universal and should satisfy a 
more tractable N.L.P.D.E. so that all results would be simpler. 

2.1. Definit ion of G(p,t) 

A "natural" definition is 

G(p,t)= -d/2fO(1, d ;-pv2)f(v,t)dv (la) 

1 

d -px)F(x,  t) dx - - [ F ( ~ ) ] -  f0 xa/2-1O(1, d ;  ( lb)  

where the isotropic and homogeneous distribution function f(v, t) = F(x, t) 
is rewritten in terms of the energy variable, d is the dimensionality, and 0 
the confluent hypergeometric function; constants ~r -d/2 or F - l ( d / 2 )  are 
introduced for further simplification of Eq. (3). When all the reduced 

2 Similarity solutions for related models have been studied in Ref. 13b. 



184 Cornille and Gervois 

moments M n = fdv v2nf(v, t ) / fdv e-  V~v 2" of F(x, t) exist, G(p, t) is simply 
their ordinary generating function G(p, t) = ~n( -p)"M,  (if the sum has a 
meaning) as introduced by Krook and Wu. (1'2) But when moments 
become infinite, or their ordinary generating function does not converge, as 
will be the case here, G(p,t) is defined directly by Eq. (la) or (lb), 
provided that the integral converges, even for p = 0; this yields f(v,t)  

= o~_~oo(v -(d+')) (e > 0). If besides we impose the existence of the second 
moment M1 (the energy) we get the asymptotic condition 

f (v , t)  = o ( G - ( 2 + d + e ) ) ,  �9 > 0 (2) 

which is far less restrictive than the usual exponential decrease requirement. 

2.2. The Equation for G 

When all moments exist and d = 2, 3, it was proved (1.2) that G(F, t) is a 
solution of the simple N.L.P.D. equation 

__0 0 1)pa(p, t) G2(p, t) (3) Op (-yi + = 

and this result may be extended easily to the d-dimensional case. When 
moments become infinite, we deduce Eq. (3) directly from the Boltzmann 
equation. In the Tjon-Wu 2d model, G(p, t) is the Laplace transform in the 
energy variable. From 

= - x  , t )  (x  ,t)  (4) -~ + 1 F(x,t) x ~ Jo F(x' 

we get 

( ) (~ t  + 1 ) G = r  t) l - e  -p~ 
J0 ~c" pX 

= 1 foPG2(p,,t)dp, 
P 

whence (3) by simple derivation. As F~x4~ox - l - ' ,  Eq. (4) exists and all 
intermediate steps are allowed also. 

For d > 2, it is more complicated and the proof is given in Appendix 
A. We sketch here the main steps. For d = 3 the B.E. reads 

where N is the normalization factor N - l =  fe-W2dw = 37 " - 3 / 2 ,  when the 
equilibrium function is e -v2, v' and w' being the velocities after collision. 
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From (1 a) 

2 o~ 2 fo~dVv,.f(v,t)foo dww2f(w,t)l(p,v,w) 
where 

185 

I ( p , v , w ) =  ~>o~n(-p)nfo~Sinxdxfo~sinOdOfo2~dev '2n 

is an integral over diffusion angles X, e, and direction angle 0, and 
= F(3/2)/F(n + 3/2). Using Krook-Wu's  techniques, (2) we rewrite I as 

a simple integral 

21 I = 8~ du r 3, - upv2)ep(1,3, - upw 2) 

whence 

+ ,).__ Jo "Ujo -::).v 

fo ~ 2:( ( upw 2) • w w,t)q, 1 , ~ , -  dw 

= fo~GZ(up, t)du 

and the announced result. 

2.3. Properties of the Solutions of Eq. (3) 

From now on, we shall work with Eq. (3), as it is simpler and d 
universal. In the conjugate space the condition for the conservation of the 
two first moments (mass and energy) reads 

G(p, t) l?=0~ 1 (6a) 

OG(p,t) p=o 0p ---- - 1 (6b) 

their existence being insured by (2), and the relaxation to the Maxwell form 
e -v2 implies 

1 G(p,t),-~ P + I (7) 

2.3.1 The Linearized Case. When looking for small deviations 
from the equilibrium, we set G(p, t )= 1/ (p  + 1)+ G(p,t) and replace (3) 
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by its linearized part 

The eigenfunctions of the linear partial derivative equation are chosen of 
the form G =  d(t)g(p), where the dependence on the two variables is 
factorized. Equation (8) is replaced by the two differential equations 

( ) ( f l + l )  P ~-~+1 -d ( t )+d( t )  a + l  

or 
1 d g _  a + l  1 
g @ p(p+  1) p 

(9) 
(a + l )d ( t )  + (a - 1)d(t) = 0 

where d(t) is the time derivative of d(t) and a is an arbitrary constant. It 
follows that 

do(t)=exp[-(aa--~l )tlda(O) 

decreases exponentially with time when a > 1 and the eigenfunctions are 

ga(P) = Y / ( P  + l i  a§ (10) 

whence the general solution of (8), 

_ pa 
o(p,t) 1 + Y~do( 0 (lla) 

p + 1 a ( p  + 1) a+~ 

where the summation runs over any set (a} even continuous. Mass and 
energy conservation conditions yield a > 0 and a > 1, respectively, and 
these inequalities precisely insure the existence of G [Eq. (2)] and an 
exponential decay for long time [Eq. (9)]. The summation in (t la) is thus 
restricted to 

a > 1 ( l l b )  

Provided R e p  > - 1/2, we have [p/p + 1[ < 1 and the convergence of 
( l la)  is insured at least for countable sets (a}, every time Ida(t)l is 
uniformly bounded (in a and t). In Section 3.1.2, we prove finer results 
about the dependence on a and t for more restrictive conditions [Eq. (26b)]. 
Au.: see query rasp. 260 

In the energy space x, the eigenfunctions go(P) correspond to the 
eigenfunctions 

r ( a  +=___~, ~ d / 2 )  , d ,x~e,X +a(x) ) (~2) 
r(a + ~)~(a/2)~9~-~'~ 
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where ff is the confluent (Kummer) hypergeometric function. The resulting 
velocity distribution function reads 

F(x , t )  = e -x + ~ d~( t )~(x )  (13) 
a > l  

and the eigenvalues are ~ = (a - 1)(a + 1) for a > 1. The spectrum is no 
longer discrete but consists in the whole interval ]0, 1 [. When a is an integer, 
say, n (n >/2), the associate eigenfunction is +n = L(~d/2-O(x) e -x  and we 
recover the well-known Laguerre solutions; moreover, if expansion ( l l a )  
contains only integer indices, the dn(t) are the ordinary Sonine moments. 

But there are infinitely many other solutions, corresponding to a not 
an integer; the +~'s do not decrease exponentially for high energies but like 
inverse powers of x, 

@a ~ X -(a+d/2)  (14) 

so that only the first moments M 0 and M 1 exist; the usual norm 

f f2(v, t)e +V2dv 

is infinite and the associated Hilbert kernel is no more square integrable, 
This is the reason why they were long rejected though all physical conserva- 
tion requirements were fulfilled. Another controversial point came from the 
wrong belief that finite norm yields finite entropy and conversely. (15)'3 
Nevertheless, Bobylev (9) and recently Hauge and Praestgaard (l~ noticed 
that they must be kept, at least in the linear case. As was said in a previous 
paper, (ll) these solutions have a finite entropy and we have shown that 
they enter another mathematical frame: they generate a larger Hilbert 
space, with another norm; they are no more orthogonal and are overcom- 
plete, i.e., they are not an independent set. The miracle is that all these 
solutions are still valid in the full nonlinear case as we shall see now. 

2.3.2. The Nonlinear Case. As in the Laguerre case, we assume 
that the general solution of the linear case will be a guide to the full 
nonlinear problem. So, we look for solutions of the nonlinear equation (3), 
written as an expansion (1 la, b). Putting (1 la) in Eq. (3), we get 

pa [(a+ 1)d~(t) + ( a - 1 ) d a ( t ) ]  
(e + l) 

= ~a db(t)db'(t) pb+b' 
b,b'>l ( p  q- l )  b + b ' + l  

3 For a discussion see Ref. 15b. 
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If the set (a)  is closed, we have an obvious infinite differential system 

(a + 1)da(/) + (a - 1)da(t) = ~ db(t)db,(t ) (15) 
b + b ' = a  
b ,b '>  l 

which is only possible when the g~(p) are linearly independent. System (15) 
may be derived more naturally by using (13) and the Laplace transform of 
the q~a for every dimension d, but the calculations happen to be more 
complicated. For d = 2, it may be done directly by using the convolution 
properties of the hypergeometric (see the remark in Appendix A). 

The great difference with the linear case arises from the necessity to 
make precise the set of indices {a). To solve (15) in a recurrent way, it 
must be countable and closed. For (a )  = (2,3,4 . . . .  , n . . . .  ) we recover 
the Laguerre solutions, but if other sets {a) may be found, it means that 
other solutions exist, which do not decrease exponentially at infinity, which 
have only a finite number of moments and an infinite norm but are 
physically perfectly acceptable. Moreover, as every eigenvalue/~a = (a - 1) 
/ ( a  + 1) may be reached by a suitable choice of the family (a}, it implies, 
as in the linear case, that there is no minimal relaxation rate. 

We seek for a set of indices 1 < a(0) < a ( 1 ) . . .  < a ( n ) . . ,  such that 

a(rn) + a ( m ' )  = a (n )  

whenever m + m' < n, for example, whenever m + m' = n - P0, P0 being a 
fixed integer. 

The unique solution has the general form 

a(n )  = (Po + n) /~ ,  Po integer, Po > ~ > 0 (16a) 

where ~ may be not rational. It may sometimes be convenient to include in 
the family the Maxwellian term 1 /p  + 1; then an alternate expression for 
a(n)  is 

~(q)  = q/~,  ~ (q )  = a (q  - Po) (16b) 

with 6(0) = O. In the first case, the system (15) reads 

(Po + n + ~)dn(t ) + (Po + n - ~)dn(t ) = ~ ~ dm(t)dm,(t ) (lVa) 
m + m ' = n - - P  0 

m,m'  > O 

and in the second one 

(q + ~)Sq(t) + (q - ~)Sq(t) = ~ ~ 8r(t)Sr,(t ) (17b) 
r W r ' = q  
r,r' > 0 

provided that 80( 0 = 1, 8k(t) --  0 if 0 < k < Po and 8q(t) = dq_eo(O. We 
shall use both forms. 

The pure Laguerre case corresponds to ~ = 1, P0 = 2. More generally, 
if ~ = N O or ~ = N o / M o ,  N o, M o integers, the family includes the ~n(x) 
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associated to Laguerre polynomials for n/> n o = 1 + [MoPo/No] ([ ] 
= integer part) and when MoP o = N o + 1, all the Laguerre come in. Then 
we have a good idea of the space generated, as it is an extension of the 
ordinary Hilbert space. But when ~ is not rational, the space spanned by 
the q~a(n) is more difficult to handle. In Section 2.3.3 we shall see that this 
difference persists for some other points. 

Remarks.  (1) Other solutions of the N.L.P.D.E. may be derived by 
using the symmetry between variables t and q = In p. If G(F, t) is a solution 
of (3), then G(et, lnp)  is also a solution of (3); but it cannot be written as 
an expansion (1 la) and does not converge to the Maxwell limit. 

(2) Time t and energy v 2 play a nonsymmetric role in the Boltzmann 
equation. Symmetry can be put in evidence for an h function linked to G 
by using variables t and u = ln p / ( p  + 1). In this way, we can obtain 
another expansion of G in terms of t-dependent functions with p-dependent 
coefficients. These coefficients satisfy a nonlinear differential system similar 
to (15) which can also be recursively solved (see Appendix B). 

2.3.3. The Invariance Property. A natural variable for G(p, t) is 
u = P A P  + 1) [or p = u/ (u  + 1)] and expansions ( l l a )  for G(p,t)  yield 
H(u, t) = 1 + ~ada(t)u ~, where we define the new function H(u, t) through 

pG(p,  t) = uH(u, t) (18) 

Now, the N.L.P.D. equation (3) is obviously invariant in the change of 
variable p ~ u and of function G ~ H, 

a--u -~t + 1)uH(u,t)  = H2(u,t)  

and it is still true when u is replaced by - u. Then, if there exists a set { b } 
of indices such that 

f u l +  E b(t)( uH(u, t) - 1 u b 

we have the following properties. 
(i) The Mb(t)'s are the solution of an infinite differential system like 

(15): 

d (b + 1) -~ 37Ib(t ) q" (b  - 1)34b(t ) = E fflb'(t)Mb"(t) 
b '+b"=b  

(ii) We have the equation 

G(p, t )  = 1 + ~,3~lb(t)p b (19) 
b 

(iii) If sets {a) and {b) are such that the expansion with set {a) in the 
variable P A P  + 1) may be transformed in an expansion with set {b} in 
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variable p, then there are infinite linear relations between the sets da(t ) and 
Mb(t ). It is presumably not the case when one or both families are not 
generated by a rational. When ~ is an integer No, the two families are the 
same. Equations ( l la )  and (19) yield then [with a(n)= n / N  o, Eq. (16b)] 
the finite relations 

3~.(t) = ~2 ( -  1)k am(t ) F(n/N~ + l) 
m+kNo= n k! r ( m / g  o + 1) (20a) 

and 

~,.(t) r(n/go + I) 
d.(t) = ~, k! F(m/No + 1) (20b) 

m + k N  o = n 

When N o --1, Eqs. (20) relate the Sonine moments d. to the ordinary 
reduced moments M. = (-1)"/Q..  It is interesting to look for a possible 
generalization for N o > 1. It follows from the definition (lb) and expansion 
(19) for G: 

d F ( ~  )n'2~ n = lim r~dxxa /2-1F(x , t )  d---~ 

where we have set /~=pt /go,  but its interpretation is not easy to handle 
except in the 2d case where 

n! M. = lira ( ~ d x  F(x, t) d---2--~ exp( - pN~ 
~ ~o ao d fi " 

if n is a multiple of N 0, say, n = kNo, the eigenfunction t)kN~ is the Laguerre 
solution r = e-~L(a/2-O(x) and ( - 1 ) ' M .  is the ordinary reduced mo- 
ment Mk; when nve kN o, the M. seems rather to be related to the 
asymptotic behavior of ~b~/Uo. When d = 2 and N o = 2, M. can be ex- 
pressed as 

(--1)" 
tim (~dx  x"/2H. (fif-x )exp( - ff2x)F(x, t) 

n !  P - ~ O  J O  " " " 

where H n is the nth Hermite polynomial. 

3. PROPERTIES OF THE SOLUTIONS OF THE NONLINEAR 
DIFFERENTIAL SYSTEM (17) 

For each family {a}, the recurrent differential system (lTa, b) may be 
solved by the techniques used in previous publications. (6-8) The d,(t) are 
sums of functions decreasing exponentially in time and the corresponding 
solution G(p, t) [respectively, F(x, t)] relaxes to the Maxwell limit I / (p  + 
1) [respectively, e-X]. The proofs will be sketched in Section 3.1. We find 
that for n higher than some fixed critical value, the d,(t)'s decrease at least 
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like their linear part. This critical value becomes larger and larger when 
considering families of solutions with smaller and smaller relaxation rates. 
We define a Hilbert space %li for the distribution functions corresponding 
to the deviation from equilibrium. We prove that the norms of these 
functions vanish when t--->~ at least like the first nonzero d~(t). We 
express also, in this space, in some well-defined way, the property that the 
contribution to the norm of the linear part of the d,'s is the dominant one 
when t ~ oo. We sketch briefly some properties of the solutions defined by 
the set {d,(0)); they are very useful for the control of the positivity 
property of F(x,  t). 

A peculiar class of solutions, called similarity solutions (or fundamen- 
tal solutions), occurs when the generalized Sonine moments dn(t ) depend 
on only one relaxation rate. We study them in Section 3.2. We recover 
Bobylev {13) Krook -Wu solutions {2) but there are infinitely many others 
which do not have an exponential decrease at large energies. Unfortu- 
nately, it is very difficult to control their positivity. 

3.1. Relaxation to Equilibrium 

We must verify that the set of initial positive distribution functions 
F(x,  0) which relax to the equilibrium Maxwell function e - x is not empty - -  
and actually infinite. Some slight differences with the pure Laguerre case 
appear but the central idea is the same. The proof and some complemen- 
tary results are described in this section. The proof is divided into three 
parts: 

3.1.1. Decrease in time for the d,'s. We start with general expres- 
sion (16a) for a(n), a(n) = (n + Po)/~ and integrate system (17a): 

'J0e  1 d~(t) = e dn(O) + ~ ' ~ dm(t')dm,(t' ) (21) 
m +  m ' = n -  p o 

where 

3', = (n + Po - ~)l(n + Po + ~) (22a) 

/?n = (n + P0 + ~)/~ (22b) 

and dn(t) reduces to its linear part d~(O)e -Yo' whenever 0 ~< n < P0 - 1. It 
may be shown recursively that d,(t) decreases at least like e -Y"'. Notice 
that, as ~/Po--+ 1, 3'0 may become very small and the relaxation to equilib- 
rium becomes very slow. 

In the pure Laguerre case, a finer result (6) says that d~(t) decreases at 
least like e -r.'. But, it is not always true in the general case. To be 
convinced of that, let ~ = N O = 2 and P0 = 3; for n = 3, 3'3 = 1/2 but d3(t ) 
behaves like e-2/5', and similarly d4(t ) and d6(t ) decrease, respectively, like 
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e -8/15t and e -3/5t and not like e -5/9t and e-7/ l l t ;  for n > 6, d.(t).-..e -v~ 
holds. More generally, the number of coefficients d~(t) for which the 
behavior is not given by .f. is finite, but it may be large and depends on the 
ratio O = Po/( .  

We have the following properties (proofs in Appendix C): 

Proposition A. If 

0 > (1/4)(3 + lx/]-ff),~l.7807 

then d,( t )  decreases exponentially like e -v"t for all n. Note that the pure 
Laguerre case corresponds to P = 2. 

Proposition B. Let 

O k = ( 1 / 2 k ) [ k + l + ( k 2 + 6 k + l )  '/2] k = 2 , 3  �9 �9 . . 

P2>P3 " ' "  > O k ' ' '  > 1 

then 

if p > Ok then 

if O < O~ then 

V n ~ { n } k =  { ( k -  1)P o <  n <  kP  o -  1} 

' 11 t 
Propositions A and B are only sufficient properties as each index n is 
considered a part of the block (n } k and is compared to the first index of 
the block, (k - 1)P 0. The "good" behavior e -v~ is surely recovered, for the 
indices n/> (k 0 - 1)P 0, k 0 being the first integer such that 0 > oko. 

3.1.2. Sufficient Conditions for the Relaxation to Maxwell. In 
order to show that the set of solutions is not empty, we search for sufficient 
conditions on the initial distribution function so that F(x ,  t) converges to 
Maxwell and is positive. (6'836)'4 Positivity will be treated in the next 
paragraph. Here we show that the norm of the deviation function R ( x ,  t) 
= F(x ,  t) - e - x  goes to zero for long times. 

The usual inner product (R  1,R2) = f~x d/z-lexRl(x)Rz(x)dx being 

4 The positivity problem has also been discussed in Ref. 16. 
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infinite, we defined another one, (1 ~) 

( R  1 , R2) = ( ~ x  d/2-1RI(x)R2(x ) dx 
dO 

and the norm is 

(23a) 

where 

o r  

( -  1 ) P 2 - o r ( p  - a) 

cp,~ = p ! r ( -  a) 

is dimension independent. Using expansion (13) for F(x,  t), we get 

r (b  + d/2)r(b' + d /2 )  
][R [I 2 = b,b' ~ db(t)db'(t) r(d/2)r(6 + 1)r(d/2)r(b' + 1) 

( -  1)P+P'2-b-~'r(p - b ) r ( p  - b') 
•  p,p, p ! r ( -  b)p' r( - b') 

X ( ~ 1 7 6  1 -2x  (d/2-1) (d/Z-  e L~ (2x)L~, ')(2x') 
J0 

With orthogonality relations for the Laguerre and then summing for p, we 
finally get 

db(t)db,(t ) F ( d / 2  + a) 
IIRll2=~a b+b'=a ~" r ( b + l ) r ( b ' + l )  2~/2+~ (24) 

For given a, 2-~[F(a + d/2)] /F(b  + 1)F(b' + 1) is maximum when b = b' 
= a/2 .  If we rewrite the index set as a(n) = (n + Po)/~, the above expres- 
sion is bounded by Kn (d-3)/2, where K is a constant depending on d and ~. 
For d < 3, we get the simple majoration for IIR I[ 2 

IIR l[ 2 < ~  ~ ]dml [tin_m[ const 
n m 

IIR II < const ~-] [dn(t)[ (25) 
n 

and it is enough to prove that N(t)  = ~,n[d,(t)[ goes to zero. Let n o be the 
first index such that dno(0 ) :~ 0. 

IIRII 2 =  ( R , R )  (23b) 

A basis is generated by the Laguerre functions e-XL(~ d/2- 0(2x) of the 
argument 2x (and not x) and each ~ba(x ) may be written (17) 

r ( a  + d /2 )  
Ca(x) = e - X r (  a + 1) r (d /2 )  ~ Cp'aL(d/2-O(2x) 

p = 0  
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For n o < n < 2n o + Po - 1 we have 

[d.(t)[ < Id.(0)le-Vo' ~< [d.(0)le-Vo0 ~ 

where y. is defined in (22a). 
For n > 2n 0 + P0, we get from (21) 

i + ( ' e x p ( y / ' )  ]dm,(t )]dt l [d.(t)[ < e x p ( - y . t )  Id.(0)l + ~ [ d m ( t ' ) [  ' ' '  
Pn dO m + m , = n _ P o  

<exp(-7.o t 14(0)1+ exp(7.o t ) ~ [dm(t')lldm,(t')l dt'l 
m + m ' = n - - P  o 

where/3 = fl.o = (2n0 + 2P0 + ~)/~ or 

N(t)exp(y.ot ) < N(O) + --~ foteXp(y.ot')N2(f)dt ' 

or 

flY.oN(O) N(t) < (26a) 
U(O) + I flY.o- N(O)]exp(y.ot) 

whenever 

N(0) < V.o/~ 

i.e., 
(no+Po-~)(2no+2Po+~) 

N(0) < (26b) 
no + Po + ~ 

Then, when N(0) is small enough, the deviation from equilibrium goes to 
zero for long times. The proof holds for d < 3, which is the most interesting 
case, but a similar argument may be used for d > 3; the proof is given in 
Appendix D. 

Result (26) has other interesting consequences. First a slight majora- 
tion of (26a) gives 

flY.oN(O) N(t) < A e x p ( -  V.o t) where A - 
f l y . o -  N(0)  

and in (21), we replace largely ]~]m+m,=n_podm(t')dm,(t')i by N2(t'), whence 

ld~(t)] < exp(-y.t)[[dn(O)l + 
A 2 q A2 e x p ( -  27.o t ) 

/~n(2Vno- Vn) j + ~n(2Yno- "In) 
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< exp( - Y2.o + eo t) ( N., (0) 

and we have 

then 

Id,(t)[ 
[d.o(t)------ T < C, exp[ - (Tn  - -  7no)/] "{- C2exp(-7.or  ) (27a) 

and d.(t) is negligible compared to do(t ) for long times. Then let 
2no+ Po-- 1 2no+ Po-- 1 

N l = ~ Id.(t)[ = exp( - 7.~ ~ ]a.(0)lexp[ - (7. - 7.o)t] 
71=] ' / 0  ? / ~ n  0 

be the "linearized" part of N(t) which includes only terms without qua- 
dratic terms. We have Nl(t ) > e x p ( -  7.ot)ld.o(0)[. The remaining (nonlinear) 
terms are 

N.z = ~ Id.(t)] 
n/> Po+ 2no 

< e x p ( -  72.o+,ot) N.,(O) + -~ 

A 2 l A 2 exp( - 27.~ 

+ /3(27.o-  ~2.o+Po) + 72.o+eo- 27.o 

Uo,(t) 
lim - 0 (27b) ,--,~ Nl( t ) 

and the large-time behavior is dominated by N i. Let us notice that if in N t 
we add ~.>~eo+Z.old.(0)lexp(-v.t) and subtract these terms in N.t, then 
property (27) still holds for this new ratio of nonlinear part versus linear 
o n e .  

3.1.3. PoaiUve Soluliona. We indicate now, how we obtained 
examples of positive polynomially decreasing solutions. Positivity at posi- 
tive times follows from positivity at t = 0. (6's'16) It is enough to prove that 
there are infinitely many positive initial distributions F(x,O) so that in- 
equality (26b) for N(0) is fulfilled. 

A simple class of solutions is the so-called fundamental positive 
solutions, i.e., 

d.o(0 ) ~ 0, d.(0) = 0 Vn ~ n0 

As ePa~o(X ) is first oscillating, then goes to infinity, it is easy to choose d,0(0 ) 
small enough with the correct sign so that 

F(a"~ + d/2) ep(_a.o, d ,x) 
1 + d.0(0 ) r ( a .  ~ + 1 ) r ( d / 2 )  
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is positive for all x and inequality (26b) is true. When t ~ 0, other terms 
come in, but only for indices a = (k + 1)(P 0 + no)/N o. 

Another way to get positive solutions when a(n) = (n + Po)/No, N o 
integer, consists in choosing first a function which is positive, known in 
closed form, and may be expanded in Laguerre polynomials. Many exam- 
ples were given in previous papers. We add to this positive function a 
unique hypergeometric q~(-(no + Po)/No, d/2 ,  x) with d,o(0 ) small enough 
and with the correct sign, so that the total function is positive. This "almost 
Laguerre" situation will be largely exploited for numerical purposes in 
Section 4. More generally we could add a finite number of hypergeometrics, 
where the coefficients are small enough with appropriate signs, in such a 
way that the whole F(x,  0) is positive. 

3.2. Similarity Solutions 

We start with system (16b)-(17b) and look for solutions in the form 
8q(t) = 3qe -cq~ for a subset of values of q [otherwise 32( 0 = 0]. We have 

30(t ) = 1;_ let Z 0 be the first nonzero integer such that 3zo ~ 0; necessarily 
3Zo(t ) - - 3zoeXp[ - t (Z  o -  ~) / (Zo+ ~)] and the unique possible relaxation 
constant e is 

1 Z 0 - f  
c -  Z0 Z 0 + (  (28) 

The differential system (17b) is replaced by a numerical system 

where 

is an integer, 

( q -  q~)(qr - q)gq = q~qB ~ 6,~3,~. (29) 
m + m ' = q  
m,m' >~ 1 

q =  Z 0 (30a) 

q ,  =  (z0 + - ; )  (30b) 

and q~, q• > ~ > 0. Conversely, q~ and qB > 0 being given, ~ is the positive 
root of the algebraic equation 

~2 + ~(q~ + q~) _ q~qB = 0 (31) 

and 0 < ~ < q~, qr Then, the similarity solution reads in the energy vari- 
able 

F(x,  t) = e x p ( -  x) 1 + exp - q--~r qt ~ f; ' 2 ,x  
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Two situations may occur: 
(i) q~ is an integer and q~ is real positive, but not an integer (nonde- 

generate case). Then, the sequence { 8q } depends on one parameter only, gq~ 
and the indices of the nonzero gq are multiples of q~: 2q~, 3q~ . . . . .  Setting 
gkqo = ~k, we get the simplified equation 

m , m '  > 1 

Notice that such a situation is very general. Given q~ integer and 
qB ~ q~, q~ not an integer, there exists always ~ < q~, qB and c > 0, ~ being 
integer, rational or not rational [Eqs. (3 l) and (28)]. Similarly, given q~ and 
~, it is almost always (i.e., except for a countable number of values of 4) 
possible to find qB not an integer. Nevertheless, the Wu solution does not 
enter this category as in the pure Laguerre case we have ~ = 1, q~ = Z 0 = 2 
(in general), and qB -- 3. It is remarkable that this family of functions which 
was long the only one to be known, is in some sense marginal. 

(ii) q~ and qB are both positive integers (degenerate case), and therefore 
the solutions depend on two parameters go~ and ~q~; more indices q appear 
(in the Wu solutions, all indices q/> 2 appear). 

Even if this possibility is more rare than case (i), there are still 
infinitely many solutions, namely, q~ and q~ being given integers, there 
always exist ~ solutions of (31), such that q~,q~ < ~ and c > 0 is given by 
(28); and conversely, given q~ there exists an infinite (countable) set of 
such that qB is an integer. In particular, when ~ is itself an integer N o 
(~ = No), it is always possible to get at least one similarity solution. From 
(31), we look for couples of integers (q~, qB) such that 

(q,~ - No)(q B - NO) = 2Ng (33) 

For every No, we have the three couples of solutions (N O + 1, N O + 2N02) 
(N O + 2,N o + No 2) and (2N0,3N0); they are not all distinct for N O = 1,2 
and they are the only possible solutions when N O is a prime integer. For the 
couple (2N0,3N0), the nonzero 8q correspond to indices multiple of 
No( q = kNo) and the associated eigensolutions are the Laguerre functions 
Lk e-x ,  beginning with L2 e - x  and L3 e-x ,  i.e., the Bobylev-Krook-Wu 
solution again! More generally, if (q~,, q~,) is a couple of solutions of (33) 
for some integer No,], then (rnq~,, rnqB~) is a solution for N0,  2 = rnNo, 1 . As an 
example, we give below the solutions for N O = 1 . . . . .  4. 

(i) N o = 1 (pure Laguerre case) the three solutions reduce to the unique 
couple (2, 3). They were first indicated by Bobylev. A subclass is the 
one-parameter family found by Krook, Wu, and Bobylev: 

( F ( x , t ) = ( 1 - z )  -s/2 1 - ~ z +  I_--Z~ exp z_--Z- ]- , 0 < z < l  
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corresponding to (7) 8q(t) = ( - -  1) q+ l(ze-t/6)q(q -- 1). T h e  who le  family was  

studied in Ref. 6 but it was impossible to find any positive solution except 
that of Krook-Wu.  

(ii) N O = 2 [eigenfunctions e-Xe~(-n /2 ,d /2 ,x )]  we get two distinct 
couples (3, 10) and (4, 6); the second one is the (2, 3) solution for N O = 1. 

(iii) N O = 3, the eigenfunctions are e-Xq~( - n/3,  d/2,  x); we have three 
distinct solutions (4,21), (5, 12), and (6,9), which is again equivalent to 
(2, 3) for N O = 1. 

(iv) N O = 4 the eigenfunctions are e - X ~ ( - n / 4 ,  d/2,  x); there are three 
solutions: (5,36), (6,20), which is the same as (3, 10) for N o = 2, and (8, 12), 
which is the same as (2, 3) for N o = 1. 

Practically, it is very difficult to get an explicit closed form for these 
functions. Function (p + 1)G(p, t) is a series in variable z = e-Ctp/(p + 1), 
but Eq. (29) is equivalent to a nonlinear differential equation in z of the 
second order that we cannot handle easily except for the Krook-Wu 
family. As a consequence, it is difficult to study their behavior and, mainly, 
their positivity. All the examples that we studied numerically led to nonac- 
ceptable solutions and it is not a trivial problem to prove positivity without 
starting with set { d n (0)). 

4, NUMERICAL CALCULATIONS 

Though the mathematical results above are very similar to the pure 
Laguerre case, numerical effects are sometimes drastically modified be- 
cause of the powerlike decrease of the new eigenfunctions. We were 
interested in two main points. The first one is related to the Tjon effect, (14) 
which was widely represented in the ordinary (Laguerre) situation (s) when 
the coefficient of the first Laguerre--i.e., L (d /2 -1) - i s  positive (1~ and not 
too small (s) compared with the coefficient of the next Laguerre L (d/2-1). In 
that case, an overpopulation occurs at higher and higher energy as time 
goes by; the process is sketched in Fig. 1 and the effect can be seen either 
at fixed t (Fig. la) or at fixed x (Fig. lb). It partially disappears when we 
add a true hypergeometric, and can be observed only for the intermediate 
times on the curves at fixed t or only for intermediate energies for those at 
fixed x. 

The second study deals with the relaxation rate to equilibrium, which, 
in the Laguerre case, is bounded from below by 1/3. Let us define the 
reduced distribution function 

fir (x, t) = F(x,  t ) /  F(x,  oo) = eXF(x, t) (34) 

In the Laguerre case, it goes to 1 at least !ike e- t /3  but cannot decrease 
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T ~ R i x , t }  

o) 

--- t==  

\ i  " - . .  

t = 0 ~  
x ib  

x z  

l F R ( x , t }  b)  

X=X 1 

X=X 2 

o 
t 

l= 

Fig. 1. Schematic evolution of the reduced distribution FR(x, t) for Tjon's effect. The initial 
FR(x, 0) must have two bumps and the maximum andzero of the last one moves toward the 
right as time goes by (Fig. la). In Fig. (lb) is plotted FR(x, t) for several x as a function of t; 
for large x (= x2), FR(x,t ) is first below 1, then crosses the equilibrium value, goes to a 
maximum, then goes back uniformly to 1. 

more  slowly than e -t /3.  With the new eigenfunctions ~a, the relaxation 
mode  is still determined by the first term in the expansion, which can 
become arbitrarily small. For  example, the relaxation to equilibrium is 
e x p [ - t / ( 2 N o +  1)] and  e x p [ - 0 7 -  1)/(~7 + 1)t] (~/> 1) in families a(n)  
= ( N  O + 1 + n ) / N  o and a(n)  = (n + 1)~/, which are special cases of (16a), 
and  it becomes very slow when N o  I and ~ / -  1 are nearly zero. As will be 
explained below, the linearized expression for ff~R is good  enough in order to 
explain these effects. 

These effects m a y  be expected even if we are "not  too far" f rom a pure 
Laguerre situation. Furthermore,  if at t = 0, hypergeometr ic  components  
are present, then necessarily, for x sufficiently large, F R will exceed value I. 
If we want  to observe when t increases an  overpopulat ion effect, it will be 
convenient  to introduce in supplement,  at t = 0, a family of Laguerre terms. 
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So, we restrict ourselves to families 

a(n) = (N O + 1 + n ) /N  o (35) 

N O integer, which involve Laguerre eigenfunctions ~p~u = e-XL~ d/2- !)(x) as 
a subset, and true hypergeometrics ~ , ~ e - X q , [ - ( N 0  + 1 + n)/No, d /2 ,x  ] 
occur when n + 1 is not a multiple of N o. We studied more precisely the 
cases N O = 2[a(n) = (n + 3)/2] and N O = 4[a(n) = (n + 5)/4] both for the 
description of the Tjon effect and of the relaxation rate which should be 
1/5 and 1/9, respectively; we compared it to the Laguerre case N O = 1, 
already studied in previous publicati6ns. (6-8) The method consists again in 
integrating recursively the system (17a) up to large enough order. We did 
not get for small time the same precision as in the Laguerre case, so most of 
our results are plotted for t > 10. The reason is that integrating up to the 
15th Laguerre polynomial is not too complicated for N o = l, but is equiva- 
lent to reach to the 30th and 60th differential equation if N o = 2 and 4; so 
we limited ourselves to the 9th and 8th polynomials in our two examples. 
For N O = 20, the same precision (up to L9) would imply the integration up 
to the 180th equation! 

4.1. General Argument 

Let us explain first how the introduction of true hypergeometrics 
e-xeo(-a, d/2, x) is so important. For not too large energies x, ~a = q~(--a, 
d/2,x) behaves like Ln+ 1 (n is the integer part of a). It has (n + 1) positive 
zeros and oscillates between them; the qualitative aspect at small or 
intermediate energies is not basically changed. But for large x, q~ increases 
exponentially, precisely q~a~eXx-a-a/2; then q'a is negligible compared to 
q~b whenever a > b, in opposition to the Laguerre case. Moreover, as da(t ) 
decreases (in general) faster than db(t ), higher-order ~'s play no role in 
asymptotic (large x or large t) behavior. Most of the information, then, 
comes from the respective location for the d,(O)'s of both the Laguerre part 
and the first true hypergeometric. Concerning the norm of F -  1 it was 
previously shown that it decreases like the time dependence of the first 
d~(t) v a O. This general feature will be slightly modulated here for fiR(x, t) 
because another variable, the energy x, is present. 

If the index of the first term in the expansion of /7 R - 1 is a true 
hypergeometric term then its contribution d,(t)q~n(x ) is dominant both at 
large t and large x. If on the contrary the expansion begins with Laguerre 
term, then the contribution d,(t)qJ,(x) of the first true hypergeometric is 
dominant only for large x at small t and the rough behavior is that of the 
Laguerre part. More precisely starting with fiR(x, t) which expands for 
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family (35) as 

f f g ( x , t ) =  1 +,~>~,od,(t)q~ - No , , x  (36) 

two cases occur. In  the first case (n o + 1 ) / N  o is not  an integer and n o 
corresponds to a true hypergeometr ic  term, whereas in the second case it is 
an integer and n o corresponds to a Laguerre. 

(i) In  the first case for x sufficiently large we find 

F R ( x , t ) ~ l + c o n s t e x p  - t  n 0 + l + 2 N  o 

x -  [ d / 2  + 1 + (n o + 1) /N01 (37) 

where we have approximated the hypergeometr ic  ~ ( - 1 -  (n o + 1) /No,  
d / 2 , x )  by its asymptot ic  behavior. W h e n  t increases ( F  R - 1), which is 
positive, decreases monotonous ly  to zero. N o  Tjon effect may  be observed 
when (37) becomes valid. The relaxation rate is (n o + 1) / (n  o + 1 + 2No) 
and  the process to equilibrium with N o > 1 can be slower than 1 /3  if 
n o < N  0 - 1 .  For  instance, if N 0 - - 2  we can have n o = 0 , i f N = 3 , n  o = 0  
and  1, if N = 4, n o = 0, 1,2, and so on. On  the other hand,  for intermediate 
x values, (37) is not  valid, we must  include the Laguerre  part  in the linear 
approximation,  and  the Tjon effect can be present. Finally let us remark 
that  if n o = 0, the relaxation rate is 1 / ( 2 N  o + 1) and can be as small as we 
want choosing sufficiently large N o values. 

(ii) In  the second case n o is equal either to N o - 1, or 2 N  0 - 1 . . . .  , or 
more  generally to k N  o - 1. In  that case the first term in the expansion 
corresponds either to L(za/2-1~(x) or L~a/2-O(x)  . . . .  Let n 1 > n o be the 
first index corresponding to a true hypergeometric.  In  order to simplify the 
discussion we consider n o -- N o - 1 and retain in the linear expansion only 
the terms corresponding to n o and n l:  

fir  (x, t) - 1 ~ const  1 e x p ( -  t / 3 ) [ x  2 + const  2 exp(x  - 7t )x  -(a/2 + ~ ]  (38) 

where 2/= (nl + 1) / (n l  + 1 + 2 n o ) -  1 /3  > 0 and /~ = (nl + 1 + N o ) / N  o. 
There exist two different regimes: 

If x >> yt, which can always be satisfied for small t values and x 
sufficiently large, then the second term in (38) is dominant .  Consequent ly  
the relaxation is governed by the true hypergeometr ic  term. 

If x << yt, which can always be satisfied for any fixed x value and  
t sufficiently large, then the first term in (38) is the dominan t  one and  
the relaxation is domina ted  by  the Laguerre contr ibut ion (1/3).  For  the 
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transition regime where x-----7t, it is clear that 
Laguerre terms between n o and n 1 . 

Cornille and Gervois 

we must include other 

4.2. Modified Tjon Effect 

As we already explained, we restricted ourselves to families (35), with 
N o = 2, 4 and FR(x, 0) is "not far" from a pure Laguerre situation where 
Tjon's effect was already observed. (8) The perturbation is the unique term 
eo((n o + 1 ) / N o , d / 2 , x  ) with a small coefficient d0(0 ) (say, 10 or 100 times 
smaller than the first Laguerre coefficients) so that it dominates only at 
high energies (x > 15) and the function increases abruptly. For intermedi- 
ate x (x < 12) it looks like the ordinary Laguerre case with two bumps. For 
small t (t < 3) and not too large energies (x~10) ,  we notice a displacement 
of the intermediate bump (Figs. 2 and 3). For large t, it disappears, as the 
hypergeometric is again predominant. As in previous works, we have 
plotted FR (x, t) as a function of t for several x (Figs. 4 and 5). When x is in 

the well [FR(x, 0) < 11, #n(x,  t) first increases, becomes greater than 1, then 
decreases to 1 monotonously like in Tjon's observation. 

We have done the same study with N o = 2, but n o -- 1 and the first 

L 

~. ix,t) 

k_ 

, = 2  

F" (x" ~ = e-" (t'45 § * 0'3x4) + 0"00 5~ (-  3-- "l"x ) I// 

/,// // 
/f ,/  

 /jI : 

I I I 
0 5 10 15 

Fig. 2. 

X 

Evolution in time of the reduced distribution function t~n(x, t ) for a two-dimensional 
gas in an "almost" Laguerre situation with Tjon effect. 
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r~R{xt) 
d=3 
F-R(x, o) = e-~- (1.318 + 0.312 x 2 + 0 0073x 4 ) 

0.016 _ 3 3 x ) 
+ --Ef f -  q, C- 7 - ,  T , 

S 
1 ~ -  _ t = 4 ~ / /  t = oo  

I I x 
0,5 5 10 15 

Fig. 3. Same as Fig. 2 for a three-dimensional gas. 

hypergeometric occurs for d4(0 ) (i.e., n I = 4). Tjon's effect is also effective 
both on finite energy and time intervals; practically, for the time and 
energy we can numerically reach with good precision, the relaxation curves 
are not very different from that presented above. 

4.3. Relaxat ion to Equi l ibr ium 

In the pure Laguerre situation the reduced distribution function b~R (x, t) 
goes to one exponentially like e -t/3 and it was generally assumed that it 
is the slowest mode possible. Now, in an enlarged family (N o > 1) with 
a(n)  = (n + 1 + N o ) / N  o, when d0(0 ) :/: 0 (n o = 0), the relaxation rate for x 
large should be 1 / (2N0+  1) even if do(0 ) is small. For intermediate 
energies, this is not so clear as Laguerre part is not negligible and we had to 
test it numerically. 

These results have been checked for N O = 1 (pure Laguerre), 2 and 4, 
denoted as I, II, and III. In Figs. 6-8, we have plotted the instantaneous 
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FR (X,t) 
d=2  
FR Ix,o) = e -x (1.z,5+ 0.2 x 2 +0.3x'; ) +0.005 ~ (- 3 , 1 , x }  

Z 

/ 

I i I I t i _  
O 2 Z, 6 8 10- 

Fig. 4. Plot of f in(x ,  t) as a function of t for the two-dimensional gas and several energies. 
Tjon's behavior corresponds to energies 7-11. The transition to the pure linear regime occurs 
near x ~ 13. We have not plotted Fn(x  , t) for small t values when the precision was not 
sufficient. 

relaxation rate 

l l o g  P e ( x , t + a t ) - I  J 
y (x ,  t) 

as a function of time t for several values of x and the three families. The 
initial reduced distributions are again not  far f rom a pure Laguerre situa- 
tion, with a small per turbat ion d0(0 ) = d 0. Depending on the family, y(x ,  t) 
goes fairly well to the respective theoretical values 1/3,  1 /5 ,  and  1 /9 ;  for 
large x (x > 15), the limit is already reached at t ~ 10 for families I I  and 
I I I  because of the predominance  of q~o. The process is slower for small x, 
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F:R(x,t) 

x=15 

x =13 ~ .  

x=lO 
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- - ~  z ~ 0 015 FR(X,O)=e ;t (1.318+0.312x +00073x ) + - ' - -  3 3 x ~ - -~,~-, , 
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t 
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S a m e  as  Fig.  4 f o r  a t h r e e - d i m e n s i o n a l  gas .  T h e  t r a n s i t i o n  to p u r e  l i nea r  r e g i m e  

o c c u r s  a t  x ~ 14. 

mainly for energies which are in the well at t = 0 (x~10) ,  but at t = 20, 
y (x , t )  is already far lower than the pure Laguerre limit 1/3. In Figs. 9a, b 
we have plotted ,/(x, t) for a given x and different values of do for families 
II and III, respectively: the convergence to Y0 improves when d o increases, 
as the domination of if0 takes place earlier. 

In  Fig. 10 we have envisaged the case where the first true hypergeo- 
metric is not the first term of the expansion of ffR(x,O). We limited 
ourselves to N O = 2, d = 2, and the hypergeometric is q~(- 7/2,  1, x) coming 
after L~~ and L~~ (n o = 1, n 1 = 4). When x is in the well (x < 20), 
the limit 1/3 is rapidly reached as in the pure Laguerre. For large x 
(x > 30) and small times, the Laguerre is negligible and the relaxation rate 
is y ( x , t ) ~ 5 / 9 ;  for example, for x ~ 4 0 ,  y(x,t) is undistinguishable from 
5/9,  up to values of times of the order of 45. When t increases, y(x,  t) slows 
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1/3 

d=2 
u FR{X'~ e-X{t45+0"2XZ+0Sx~}+001~(-N~ 

i I 
I 

1T 

1/5 ~ 1 1 1  " 

--x=9 
___ x=15 

0 !0 w 20 t 

Fig. 6. Plot of ~,(x, t) as a function of t for several x and d = 2. Family I, pure Laguerre case 
(no q} function); family II, N o = 2; family III, N o = 4. 

down to the true l imit  1 /3  and  the t rans i t ion  occurs  for a t ime tx, 
increas ing with x. N o  precise s tudy of this t ransi t ion t ime has  been  done.  
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APPENDIX A 

. Derivation of the N.L.P.D.E. for G for the 3d Case 

We start  f rom the Bol tzmann  equa t ion  (5), 

+ f =  N C d w C  d a  ~ ,  , Off t ) f ( w ' , t )  J t  v ' 
J J 

( A t )  
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1/3 

1/5 

1/9 
03 

k d=2 

u F-R(x,o ) =e-x(1.Z.5 + O.2x~ +O.3xZ')+ O.OOl CJ(-~ol ,l,x) 

7 / / /  

_ _ x = 1 2  

- - - •  

i i I 
0 10 20 30 40 

t 

Fig. 7. The same as Fig. 6 with other values of the perturbation parameter (d 0 = 0 ,  
d o = 0.001, d o = O.OOl). 

where N = fe-W2dw = ~r-3/2; v' and  w' are the velocities after collision: 

v,2(w,2) = v 2 1 + cosx  + w  2 1 -7- cosx  +vwsinxsinOcose 
2 2 

= (x,e) are s tandard notat ions for the diffusion direction angles and  
0 = (v, w). Using t ransformat ion (la),  we get 

l f f  OtG + G = -~ dvdw f(v',t)f(w',t)~(1, 3 , -pv  2) 

or, after exchanging variable v', w' and v, w, 

f f f ,ca _pv,2) 1 dvdwf(v,t)f(w,t) OtG + G= -~ 

�9 Ti "~ d O  

.rr ~ 2~r 3 

I(p,v,w) =fo sinxdxfo sinOdOfo d e o ( 1 , ~ , - p v  '2) 

=fo~Sinxdx~>o~,(-p)'fo~sinOdOfoe~dev '2'~ 
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~r(• 

1,3 ~ 7 -  . . . . .  

1,91 ~ x 
01 

d=3  

FR (x,o)= e- '}  (1.318 +0.312x z + 0.0073 x ~' )+ d. ~(-'N--.~-,3,x} 
No 2 

__x= lO  
_ . _  x=15 

o i I 
IO 2o 30 

t 

Fig. 8. The same as Fig. 6 for a 3d gas. Family I, d o =  0; family II, d o=0 .016 /~r ,  
~o = ~ ( -  3 /2 ,  3 /2 ,  x); family III, d o = F ( 1 1 / 4 ) / F ( 9 / 4 ) F ( 3 / 2 ) ,  q~o = ~ ( -  5 /4 ,  3 /2 ,  x). 

with X~ = F(3/2)/F(n + 3/2). The last two integrals may be performed 
from Krook-Wu techniques (2) for calculating f~sin 0 dOf2o "& e-P~'~" and we 
get 

( ' X ~2n+2 (n + l)s163 2'~&v'2"- vw2rrsinx vcos ~ +wsm-f ) 

(vcos ~ ws in~  
_ _ X ] 2 n + 2 j  

The integration over the diffusion angle X is too classical. We expand the 
polynomials and finally get for I, 

I = 4qr 2 (-p)'Yk. F(n + 3 /2) r (1 /2)  D 2m w2n- 2m 

.>o n + 1 m=O F(m + 3/2) F(n - m + 3/2) 

(A3) 
Variables v and w can be separated by replacing 

)~nF(n + 3/2) 

n + l  
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0.4 

0.2 

01. 

Fig. 9. 

y(x,t) 
d=2 
x=s 

~BR (x,o)=e'x(1.45 +Q2x2+O.3x z' )+do ( l>(-} , l ,x)  

d.=03i'--,~_'~ ~ 
~ - ~  ' ~ - .  1/9 

O~ 

d=2 

u x=9  

~ FR(X,O) = e-* (1.45 + 0.2x 2 +0.3x z') 

+do| C-~,1,,I 

L . \  d,=OOm~ 

., \ . ,&o.oos\  
-%,, \ 

. . . . . .  *_.~-._.~_ ~ .  ~._.__ 

t 

o) b) 

Plot of ~,(x, t) as a function of t for x = 9 and dimension 2. (a) For family II and 
different values of do, (b) for family III. 

b y  the  in t eg ra l  

whence ,  se t t ing  m '  = n - m, 

3 

+ m' D 2m 

m , m '  

= 8~s q, (1 ,3 ,  - upv2)q~(1,~, - upw 2) 

t hen  we rewr i t e  (A2)  as  

~ , G +  G =  16 r ' l  ,"m 2 - -  duJ o dvv"f(v't)ep(l'~' -upv2) 

foo ( - uew ) • dww w,t)ep 1 ,3 ,  

1 s =s = 7 

a n d  b y  d e r i v a t i o n  (a/ap)(O, + 1)pG = G 2. 

w 2 m  ' 

r ( m ' +  3 / 2 )  s tum+m" du 

(A4)  
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l v(x,t) 

o.sl_ \ \  

1/3 ~'~ . . . . . . . . . . .  

/ 
/ / x=  20 

/ d=2 

~R{X,O)= e-x (1.LS + 0.2X2 + 0.3 x4) +0.001 * ( - ; , 1 , x )  

03 / I I t m. 
10 20 3O /.O 

Fig. 10. Plot of y(x, t) as a function of t for family II and different values of x when the first 
term in the expansion is a Laguerre polynomial. 

2. Proof for d > 3 

Equation (A1) is replaced by 

O,f + f = u,, f ddw f dad , f (  v , t ) f ( w ' ,  t ) g d (  X ) (A5) 

where N d = ~-a/2, S2 a and S a are the d-dimensional solid angle and unit 
surface, respectively: 

d ~  a = (sin x )  a -  2(sin r 3(sin e l ) d - 4  . .  sin e d_ 4 d x  de de,  . �9 �9 ds 3 

and the cross section (s) 

g d ( x )  = (sinx)3_ a F2[(d - 1) /2]  Z 
F2(d/2)  4 
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After integrating over angles 41 . . . 4 d _ 3 ,  0 < t [1 ,4  2 . . . .  , 4 d _  4 < ~ ,  0 < IZd_. 3 

< 2~r and using transformation (la), one gets 

21 ~-'/2F[( d -  I)/2] fo~vd_,dVfoOOWd_,dW 
x f(v, Of(w,t)&(p,v,w) 

where 

d _pv,2) Ia(p,v,w)= 2fo'~Sinxdxfo'~sinOdOfo~&(sin4) a 3@(1,~,  

reduces to I(p, v, w) if d - -  3. 
Calculations for every dimension were already performed in Ref. 8. 

We get for 

<v'a")=fo~Sinxdxfo~SinOdOfo'~V'2n(sin4)d-3de 

the final value 

4F(1/Z)F(d/2-  1) 

r [ ( d -  1) /2]  

(ldu(-pu)"+m' v2mF(d/2) w2m'F(d/2) 
m+.,'=.-'0 r(m + d/2) F(m'+ d/2) 

and the proof ends like for d = 3. [] 

3. R e m a r k  

Knowing the eigenfunctions (12) of the linearized system it is possible 
to obtain directly system (15) when d = 2 and, in a more complicated way, 
when d = 3. 

3.1. 2d  Gas .  Starting with the Krook-Wu equation (4) and using 
expansion (13), we rewrite the B.E. as 

[ da(t ) + da(t ) ]e-Xq~( - a, 1,x) 
a 

2 eX 
= 2 db(t)d~,(t) WT-dx' b,l,x'-x")•(-b',l,x") 

b,b' 

Using the convolution properties of the hypergeometric the integral over x" 
becomes ( ~ v) 

x'q~(-b - b',2,x') 
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Using 

d e-X.~(_b_b,, t ,x ,)  e-X'eo(-b - b',2,x') = b + ~' + 1 dx' 

[Ref. t7, p. 255, formula (13)], we perform the integration over x' and 
system (15) follows. 

3.2. 3d Gas. We use the Laplace transform ff(p,t) of F(p,t), 
which expands as 

ff (p,t)=2qr ~ d,(t) 1 ( P )~ F(a + 3/2) 
a>, ~ _  ~ _  F(a + 1) 
a=0 

Equation (A1) becomes 

~a (d~+da)F(a+3/2) 1 ( 1 ) )~ 
r (a+l)  p3/2 

= 2~rN~ dbdb' F(b + 3/2) F(b '+  3/2) 
b,b' r2(3/2) r(b + 1) r ( b ' +  1) 

• foo ~ evv2e-V2+(_ b,~ ,v2)fo~ dww~e-W2,(- ~',~, w2)j(p, v, w) 

(A6) 

where 

J ,,v w --;o:s,ox X;o~ pV t2 

is the analog of I(p, v, w) in (A2) and may be calculated in the same way, 
the coefficient X n is now Xn = 1/n!.  Expression (A4) for I becomes 

J(p,v,w) _ r2(3/2)2 foldUul/2(1 -- U) -1/2ek[l't'~ ",~ ,3 __pUV2)~(1,3, __/OL/W 2) 

From Ref. 17, p. 287, formula 22, the entire right-hand side of (A6) may be 
rewritten as 

~Nb~.b dbdb, foldUul/2(1 -- u)-l/2(pu)b+b'(l q- flU) -b-O'-2 

The integral becomes (Ref. 17, p. 10, formula 12) 

pb+b'(1 +p)-b-b'-3/2 F(b + b ' +  3/2)F(1/2) 
r(b + b' + 2) 

whence the result. 
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APPENDIX B 

From G and Eq. (3) let us define a new function 

h( u = ln p ) p +  1 ,t = - l + (p + 1)G(p,t) 

which satisfies a symmetric N.L.P.D.E. 

0----~2 - 1)h(u, t )  = h2(u,t) (B1) (o+o+  ata. 

First we consider the linear part  (left-hand side) of (B1) and we see 
that the eigensolutions e-ate ~ with a x = (X + 1)/(1 - X )  can be chosen 
exponential either in the t or u variables. The physical requirements for 
the moments  M0, M1, and the behavior when t--) oo restrict to 0 < X < 1 
and a > 1. 

Secondly for the whole nonlinear Eq. (B1) we can consider either an 
expansion like ~,oe"Ua,(t) which leads to the system (15) (studied in this 
paper) or another expansion ~xe-Xt6x(u) where the coefficients 6 x satisfy 

d a a ( 1  - X) - 6x(1 + X) = ~] a,a~, (B2) 
/L+/L'=X 

A P P E N D I X  C 

We start with expression (21) for dn(t ) 

[ 1 fotdt'eV"t" , ' ]  d,(t) = e -v"' d,(O) + ~ ~, dm(t )dm,(t ) 
m + m ' = n - - p  0 

~, y, = (n + Po - ~)/(no + Po + ~) and/~n = n + P0 - ~ are defined in (22). 
The quadratic part  exists when n >1 Po. 

s u m  

Proof of Proposition A. (i) For fixed n, m + m'  = n - P0, n/> P0, the 

m + P o -  ~ m ' + P o -  ~ 
]tm "]- "Ym' - "4" 

m + P o + ~  m ' + P o + ~  

is minimum when m = 0 (respectively, m ' =  O) and m ' - - n -  Po (respec- 
tively, m = n - Po) 

P o -  ~ n - 
inf(Ym + Ym') -- PO + ~  + --n+~ 
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(ii) Then  we have  

P o - 4  n - ~  n +  Po-,-4 
Ym + Ym' -  3'n > inf(Tm + "/m') - Yn - p o + 4  + ~ - ~  + n + P o + ~  

The  numera to r  of the last expression can be written as 

(Po + 4)( 2P2 - 3Po4 - 42) + (n - Po)(Po - 4)(3P o + 24) 

+ (n - eo)2(eo - 4) 

As n/> Po > 4, a sufficient condit ion for 3% + ~'m' -- "[. to be positive is 

2Po 2 - 3 eo4 - 42 > 0 
o r  

9 > ,02 = ( 1 /4 ) (3  + 1 ~ )  

where p = Po/~" 
(iii) Let  p > P0. We prove  by induct ion Proposi t ion A. As dm(t' ) and 

dm,(t') decrease at least like e -7~c and  e -v~'t (recurrence hypothesis),  then 

.&t' / , e dm(t )dm,(t ) 

is exponential ly decreasing like 

exp[  - t(Tm + 7 m ' -  Y.)] 

whence the result. �9 

Proof of Proposit ion B. It is a succession of small lemmas.  Proofs are 
straightforward.  We  recall that  

n ~ (n}ke=>(k -- 1)P o -<< n < kP  o -  1 

Lemma (i). We  have  
p - 1  

7,, >/ T o -  
0 + 1  

Lemma  (ii). We  have 

k ( o -  l) k o - 1  
p +~------~ > kp + ~  if p > Ok 

N.b.:  If n E (n}2, d, decreases like inf[2(p - D r i p  + 1),(20 - 1)/(20 + 1)] 
and Proposi t ion B is true if k -- 2. 

(iii) Let 

Ck"k2(P)= k,o  T l 02(--1 - k2p T 1  -p S[- i 

it is an  increasing funct ion of p and  C~,k2 + Ck2k~ = Ck,k~, Ck~k~ + Ck2,, = O. 
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We have the inequalities 

c~,k2(p) > 0 

< 0  

and more generally, Ck,,k2(P) > 0 
(iv) Let 

k i p -  1 
Ck,,k2(P) -k~p + 1 

if P > Pk2 

otherwise 

Vp > Ok2 if k I < k 2 .  

k2p - l (k 2 - k O p -  1 - - +  
k 2 p + l  (k 2 - k ~ ) p + l  

Similarly, Ckt,k2(p) is an increasing function of p and 

Ck,,kz(P) > O, Vp > Pk2 if k I < k 2 

(v) Then, we prove Proposition B recursively. We assume it is true up 
to k - 1 and show it for k. 

If n E {n)k, d,, decreases at least like inf(exp(-7~t),dmdm, } where 
m ~ {n)kt ,m'  E {n)k_~, ,k  1 < k. 

�9 exp ( -7n t )  decreases at least like e x p [ - ( k p  - 1)/(kp + 1)t] [we take 
the minimum value for the block {n)k, i.e., n = (k - 1)Po]. 

�9 If p < pk_l,dmdm, decreases at least like e x p { -  k[(p - 1)/(p + 1)]t) 
(recurrence hypothesis). 

�9 If P k _ l < p ~ p k  2, P k - 2 ~ P ~ P k - 3  " ' ' ,  P 3 ~ P ~ P 2  and P ~ P 2  
dmd m, decreases either like exp[--fk,,k(P)t] or exp[--fk,k(p)t] where we have 
the following: 

L e m m a  (iii). 

fk,,k -- kIp -- 1 ( k -  kO( p - 1) k p -  1 k p -  1 
k i p +  1 + p + l  = Ck"k(P) .at- kp +----~ > kp +------1 

L e m m a  (iv). 

ffk,,k - -  kip - 1 (k - k O p -  1 k p -  1 k p -  1 
kip +~ + (k - k,)p + 1 = Ck,,k(P) + kp +------~ > kp +-------( 

then for 0 > Ok-1, exp(+ ynt)dmdm, decreases exponentially and 

l P P ! P e x p ( -  7 j ) f  ~ exp(7~t )dm(t )d,~.(t )dr 

decreases like e x p ( - [ ( k p - 1 ) / ( k p +  1)]t) whence the result by using 
Lemma (ii). [] 
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APPENDIX D 

Cornille and Gervois 

Bound for [LR I[ when d > 3 

We set 

db(t) =d~(0 
r[b +(d+ !)/4] 

F(b + 1) 

Expression (24) for ]JR I[ 2 reads now 

g(a + d/21 
IIRII2 = s b+b'=a2 2-a-a/2de(t)g'(t)  r ib  + (d+ 1)/4]rib' + ( d +  1)/4] 

< A 2 ~ db(t)db'(t) 
b , b '  

= b 

where A is a constant and 

~k b = 

F [ b +  ( d +  1)/4] 

r(b + 1) 

hn Xn heo < - -  < - -  
Xm?'~, X&_~  o XO ~ 

As 

or, written differently, 

IIRII < A~Xnd. ( t )  

where we have done the substitution b = (n + Po)/~ and db(t ) is rewritten 
as dn(t ). We prove that 

n 

goes exponentially to zero for long times. 
From (22) we get 

[ ' , s exp(y~o t ) ]d.[h. < exp(-  y.ot) X.ld.(0)l + 2 
m + m ' = n - - p  o 
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we have 

[ __l ~P~176176 A?(t) < e x p ( -  y,0 t) N(0) + -~ 

and the end of the proof is similar to that for d < 3 with N(t) and/3  is 
replaced by /~o2/~eo. Results for [dn(t)l/[dn(O)[ and N,t(t)/Nl(t ) [Eqs. 
(27a, b)] are unchanged. 

REFERENCES 

1. M. Krook and T. T. Wu, Phys. Lett. 36:1107 (1976). 
2. M. Krook and T. T. Wu, Phys. Fluids 20:1589 (1977). 
3. J .A.  Tjon and T. T. Wu, Phys. Rev. A 19:883 (1979). 
4. M.H.  Ernst, Phys. Lett. 69A:390 (1979). 
5. H. Grad, Comm. Pure Appl. Math. 2:331 (1949) and Handbuch der Physik XII, p. 268 

(Springer Verlag, Berlin, 1958); see also T. Carleman, Acta Math. Stockholm 60:91 
(1933); C. Cercignani, Theory and application of the Boltzmann equation (Scottish Aca- 
demic Press, Edinburgh and London 1975), pp. 351-354. 

6. M. Barnsley and H. Cornille, J. Math. Phys. 21:1176 (1980); Proc. R. Soc. London, 
374:371 (1981). 

7. H. Cornille, J. Stat. Phys. 23:149 (1980), C. R. Acad. Sci. Ser. B 289:111 (1979). 
8. H. Cornille and A. Gervois, J. Stat. Phys. 23:167 (1980); P. C. Sabatier, "Problbmes 

inverses-~volution nonlin~aire." Editions du CNRS 15quai A. France (Paris, 1980), Phys. 
Lett. A 74:291 (1980); RCP Problemes inverses (Montpellier, 1979), CNRS editor. 

9. A.V. Bobylev, Akad, Nauk SSR 225:1041 (1975) [Soy. Phys. Dokl. 20:820 (1975)]. 
10. E. H. Hauge and E. Praestgaard, Ark. Det Fys. Sem. Trondheim 11 (1979), ISSN 

0365-2459, 
11. H. Cornille and A. Gervois, Phys. Lett. A 79:291 (1980). 
12. H. Cornille and A. Gervois, C. R. Acad. Sei. Set. B 291:101 (1980); J. Phys. (Paris) Lett. 

41L:581 (1980). 
13. (a) A. V. Bobylev, Sov. Phys. Dokl. 21:632 (1976). (b) E. M. Hendriks et al., Soluble B.E. 

for internal state and Maxwell models, Preprint, December 1979. 
14. J .A.  Tjon, Phys. Lett. A 70:369 (1979). 
15. (a) L. Waldmann, in Handbuch der Physik XII  (Springer Verlag, Berlin, 1958), pp. 

365-367; (b) G. Ford and G. Uhlenbeck, Lectures in Statistical Mechanics (Proceedings 
of the Seminar, Boulder, Colorado, 1960), Am. Math. Soc. 1963:88. 

16. T. Carleman, Acta Math. Stockholm 60:91 (1933); T. Nishida, Comm. Math. Phys. 61:119 
(1978); S. Simons, Phys. Lett. A 69:239 (1978). 

17. A. Erdelyi, Bateman Manuscript. Higher Transcendental Functions, (McGraw-Hill, New 
York, 1953), Vol. 1, p. 276, formula (6), in the limit case x = - 1. 


